Search results for "Gene Regulatory Network"
showing 10 items of 122 documents
A Complex Gene Network Mediated by Ethylene Signal Transduction TFs Defines the Flower Induction and Differentiation in Olea europaea L.
2021
The olive tree (Olea europaea L.) is a typical Mediterranean crop, important for olive and oil production. The high tendency to bear fruits in an uneven manner, defined as irregular or alternate bearing, results in a significant economic impact for the high losses in olives and oil production. Buds from heavy loaded (‘ON’) and unloaded (‘OFF’) branches of a unique olive tree were collected in July and the next March to compare the transcriptomic profiles and get deep insight into the molecular mechanisms regulating floral induction and differentiation. A wide set of DEGs related to ethylene TFs and to hormonal, sugar, and phenylpropanoid pathways was identified in buds collected from ‘OFF’ …
Identifying Early Warning Signals for the Sudden Transition from Mild to Severe Tobacco Etch Disease by Dynamical Network Biomarkers
2019
This article belongs to the Special Issue The Complexity of the Potyviral Interaction Network.
Functional genomics of arbuscular mycorrhiza : decoding the symbiotic cell programme
2004
More extensive insight into plant genes involved in the symbiotic programme of arbuscular mycorrhiza is presently being achieved by global approaches that aim to discover novel genes or subsets of genes that are essential to cell programmes in the different steps of plantfungal interactions. The strategy of functional genomics based on large-scale differential RNA expression analyses (differential-display reverse transcriptase - PCR), electronic Northerns, suppressive subtractive hybridization, DNA chips) is presented, with a focus on arbuscular mycorrhiza in Pisum sativum and Medicago truncatula. The most recent knowledge about gene networks that are modulated in roots during arbuscular …
CRISPR-mediated strand displacement logic circuits with toehold-free DNA
2021
DNA nanotechnology, and DNA computing in particular, has grown extensively over the past decade to end with a variety of functional stable structures and dynamic circuits. However, the use as designer elements of regular DNA pieces, perfectly complementary double strands, has remained elusive. Here, we report the exploitation of CRISPR-Cas systems to engineer logic circuits based on isothermal strand displacement that perform with toehold-free double-stranded DNA. We designed and implemented molecular converters for signal detection and amplification, showing good interoperability between enzymatic and nonenzymatic processes. Overall, these results contribute to enlarge the repertoire of su…
Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions
2009
46 pages, 4 tables, 6 figures, 3 additinoal files.
Longevity-related molecular pathways are subject to midlife “switch” in humans
2019
Emerging evidence indicates that molecular aging may follow nonlinear or discontinuous trajectories. Whether this occurs in human neuromuscular tissue, particularly for the noncoding transcriptome, and independent of metabolic and aerobic capacities, is unknown. Applying our novel RNA method to quantify tissue coding and long noncoding RNA (lncRNA), we identified ~800 transcripts tracking with age up to ~60 years in human muscle and brain. In silico analysis demonstrated that this temporary linear “signature” was regulated by drugs, which reduce mortality or extend life span in model organisms, including 24 inhibitors of the IGF‐1/PI3K/mTOR pathway that mimicked, and 5 activators that oppos…
Distinctive Histogenesis and Immunological Microenvironment Based on Transcriptional Profiles of Follicular Dendritic Cell Sarcomas
2017
Abstract Follicular dendritic cell (FDC) sarcomas are rare mesenchymal tumors with variable clinical, morphologic, and phenotypic characteristics. Transcriptome analysis was performed on multiple FDC sarcomas and compared with other mesenchymal tumors, microdissected Castleman FDCs, and normal fibroblasts. Using unsupervised analysis, FDC sarcomas clustered with microdissected FDCs, distinct from other mesenchymal tumors and fibroblasts. The specific endowment of FDC-related gene expression programs in FDC sarcomas emerged by applying a gene signature of differentially expressed genes (n = 1,289) between microdissected FDCs and fibroblasts. Supervised analysis comparing FDC sarcomas with mi…
Peripheral artery disease, redox signaling, oxidative stress – Basic and clinical aspects
2017
Reactive oxygen and nitrogen species (ROS and RNS, e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. At higher concentrations, ROS and RNS lead to oxidative stress and oxidative damage of biomolecules (e.g. via formation of peroxynitrite, fenton chemistry). Peripheral artery disease (PAD) is characterized by severe ischemic conditions in the periphery leading to intermittent claudication and critical limb ischemia (end stage). It is well known that redox biology and oxidative stress play an important role in this setting. We here discuss the major pathways of oxidative stress and re…
Dynamics and predicted drug response of a gene network linking dedifferentiation with β-catenin dysfunction in hepatocellular carcinoma
2019
Background & Aims Alterations of individual genes variably affect the development of hepatocellular carcinoma (HCC). Thus, we aimed to characterize the function of tumor-promoting genes in the context of gene regulatory networks (GRNs). Methods Using data from The Cancer Genome Atlas, from the LIRI-JP (Liver Cancer – RIKEN, JP project), and from our transcriptomic, transfection and mouse transgenic experiments, we identify a GRN which functionally links LIN28B-dependent dedifferentiation with dysfunction of β-catenin (CTNNB1). We further generated and validated a quantitative mathematical model of the GRN using human cell lines and in vivo expression data. Results We found that LIN28B and C…
The phospholipase DDHD1 as a new target in colorectal cancer therapy
2018
Background Our previous study demonstrates that Citrus-limon derived nanovesicles are able to decrease colon cancer cell viability, and that this effect is associated with the downregulation of the intracellular phospholipase DDHD domain-containing protein 1 (DDHD1). While few studies are currently available on the contribution of DDHD1 in neurological disorders, there is no information on its role in cancer. This study investigates the role of DDHD1 in colon cancer. Methods DDHD1 siRNAs and an overexpression vector were transfected into colorectal cancer and normal cells to downregulate or upregulate DDHD1 expression. In vitro and in vivo assays were performed to investigate the functional…